Land implications of the first climate actions without negative net global emissions

0


[ad_1]

  • 1.

    Rogelj, J. et al. A new scenario logic for the long-term temperature goal of the Paris Agreement. Nature 573, 357-363 (2019).

    Google Scholar CAS

  • 2.

    Anderson, K. & Peters, G. The problem with negative emissions. Science 354, 182-183 (2016).

    Google Scholar

  • 3.

    Peters, GP & Geden, O. Catalyzing policy change from low carbon to negative carbon. Nat. Clim. Switch 7, 619-621 (2017).

    Google Scholar

  • 4.

    Clarke, L. et al. International climate policy architectures: overview of international EMF scenarios 22. Energy saving. 31, S64 – S81 (2009).

    Google Scholar

  • 5.

    Kriegler, E. et al. The role of technology in achieving climate policy goals: an overview of the EMF 27 study on global technology and climate policy strategies. Clim. Switch 123, 353-367 (2014).

    Google Scholar

  • 6.

    Clarke, LKJ et al. in Climate change 2014: climate change mitigation (eds Edenhofer, O. et al.) 413-510 (IPCC, Cambridge Univ. Press, 2014).

  • 7.

    World Energy Outlook 2015 (IEA, 2015).

  • 8.

    van Vuuren, D. et al. A new scenario framework for climate change research: matrix scenario architecture. Clim. Switch 122, 373-386 (2014).

    Google Scholar

  • 9.

    Meinshausen, M. et al. Greenhouse gas emissions targets to limit global warming to 2 ° C. Nature 458, 1158-1162 (2009).

    Google Scholar CAS

  • ten.

    Matthews, HD, Gillett, NP, Stott, PA & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829-832 (2009).

    Google Scholar CAS

  • 11.

    Fuss, S. et al. Focus on negative emissions. Nat. Clim. Switch 4, 850-853 (2014).

    Google Scholar CAS

  • 12.

    Shue, H. Climate dream: negative emissions, risk transfer and irreversibility. J. Hum. Rights Approx. 8, 203-216 (2017).

    Google Scholar

  • 13.

    Williamson, P. Emissions Reduction: Taking a Look at CO2 removal methods. Nature 530, 153-155 (2016).

    Google Scholar CAS

  • 14.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Switch 6, 42-50 (2016).

    Google Scholar CAS

  • 15.

    Popp, A. et al. The future of land use in shared socio-economic pathways. Glob. About. Switch 42, 331-345 (2017).

    Google Scholar

  • 16.

    Field, CB & Mach, KJ Resizing Carbon Dioxide Removal. Science 356, 706-707 (2017).

    Google Scholar CAS

  • 17.

    Boysen, LR et al. The limits of the mitigation of global warming through the elimination of terrestrial carbon. The future of the Earth 5, 463-474 (2017).

    Google Scholar CAS

  • 18.

    Morrow, D. & Svoboda, T. Geoengineering and non-ideal theory. Aff. Public Q. 30, 83-102 (2016).

    Google Scholar

  • 19.

    Fujimori, S., Rogelj, J., Krey, V. & Riahi, K. A new generation of emissions scenarios should cover blind spots in the carbon budget space. Nat. Clim. Switch 9, 798-800 (2019).

    Google Scholar CAS

  • 20.

    Fuss, S. et al. Negative Emissions — Part 2: Costs, Potentials and Side Effects. About. Res. Lett. 13, 063002 (2018).

    Google Scholar

  • 21.

    Bauer, N. et al. Global Energy Sector Emissions Reductions and Bioenergy Use: An Overview of the Bioenergy Demand Phase of the EMF-33 Model Comparison. Clim. Switch 163, 1553-1568 (2018).

    Google Scholar

  • 22.

    Roe, S. et al. Contribution of the terrestrial sector to a world at 1.5 ° C. Nat. Clim. Switch 9, 817-828 (2019).

    Google Scholar

  • 23.

    Hanssen, SV et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Switch ten, 1023-1029 (2020).

    Google Scholar CAS

  • 24.

    Hasegawa, T. et al. Food security in the context of a strong demand for bioenergy towards long-term climate objectives. Clim. Switch 163, 1587-1601 (2020).

    Google Scholar

  • 25.

    Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite the negative side effects of terrestrial mitigation. Nat. Common. ten, 5240 (2019).

    Google Scholar

  • 26.

    Riahi, K. et al. Locked in the Copenhagen Commitments – Implications of Short-Term Emissions Targets for the Cost and Feasibility of Long-Term Climate Targets. Technol. Forecast. Soc. Switch 90, 8-23 (2015).

    Google Scholar

  • 27.

    Rogelj, J. et al. to the IPCC Special report on global warming of 1.5 ° C (eds Masson-Delmotte, V. et al.) 93-174 (OMM, 2018).

  • 28.

    Luderer, G. et al. Residual fossil CO2 emissions in the tracks from 1.5 to 2 ° C. Nat. Clim. Switch 8, 626-633 (2018).

    Google Scholar CAS

  • 29.

    McCollum, DL et al. Energy investment needs to fulfill the Paris Agreement and achieve the Sustainable Development Goals. Nat. Energy 3, 589-599 (2018).

    Google Scholar

  • 30.

    Tebaldi, C. & Knutti, R. The use of the multi-model set in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053-2075 (2007).

    Google Scholar

  • 31.

    Thompson, SG & Higgins, JPT How should meta-regression analyzes be undertaken and interpreted? Stat. Med. 21, 1559-1573 (2002).

    Google Scholar

  • 32.

    Fujimori, S. et al. Inclusive policy for climate change mitigation and food security under the climate target of 1.5 ° C. About. Res. Lett. 13, 074033 (2018).

    Google Scholar

  • 33.

    Fuhrman, J., McJeon, H., Doney, SC, Shobe, W. & Clarens, AF From zero to hero? Why integrated assessment modeling of negative emissions technologies is difficult and how we can do better. Before. Clim. 1, 11 (2019).

    Google Scholar

  • 34.

    Nemet, GF et al. Negative Emissions — Part 3: Innovation and Scaling Up. About. Res. Lett. 13, 063003 (2018).

    Google Scholar

  • 35.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in in-depth mitigation pathways. Nat. Common. ten, 3277 (2019).

    Google Scholar CAS

  • 36.

    Beerling, DJ et al. Agriculture with crops and rocks to combat global climate, food and soil security. Nat. Plants 4, 138-147 (2018).

    Google Scholar

  • 37.

    High-level review of a wide range of marine geoengineering techniques on offer (GESAMP, 2019).

  • 38.

    Fujimori, S. et al. SSP3: implementation of the AIM of shared socio-economic paths. Glob. About. Switch 42, 268-283 (2017).

    Google Scholar

  • 39.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM / CGE [Basic] Manual (Tsukuba Center for Social and Environmental Systems Research, NIES, 2012).

  • 40.

    Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Comprehensive land-use model linked to an integrated valuation model. Sci. About. 580, 787-796 (2017).

    Google Scholar CAS

  • 41.

    Frank, S. et al. Reduce greenhouse gas emissions in agriculture without compromising food security? About. Res. Lett. 12, 105004 (2017).

    Google Scholar

  • 42.

    Fricko, O. et al. The marker quantification of Shared Socio-economic Path 2: an intermediate scenario for the 21st century. Glob. About. Switch 42, 251-267 (2017).

    Google Scholar

  • 43.

    Havlik, P. et al. Mitigation of climate change through transitions of livestock systems. Proc. Natl Acad. Sci. United States 111, 3709-3714 (2014).

    Google Scholar

  • 44.

    Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC model documentation (CCR, 2017).

  • 45.

    Popp, A. et al. Protection of land use for climate change mitigation. Nat. Clim. Switch 4, 1095-1098 (2014).

    Google Scholar CAS

  • 46.

    Bodirsky, BL et al. Reactive nitrogen requirements to feed the world in 2050 and nitrogen pollution mitigation potential. Nat. Common. 5, 3858 (2014).

    Google Scholar CAS

  • 47.

    Emmerling, J. et al. The WITCH 2016 model – Documentation and implementation of shared socio-economic pathways (FEEM Working Document n ° 42, 2016).

  • 48.

    Hasegawa, T. et al. Risk of increased food insecurity as part of a strict global climate change mitigation policy. Nat. Clim. Switch 8, 699-703 (2018).

    Google Scholar

  • 49.

    Fujimori, S. et al. A multi-model assessment of the food security implications of climate change mitigation. Nat. To support. 2, 386-396 (2019).

    Google Scholar

  • [ad_2]

    Leave A Reply

    Your email address will not be published.