Land implications of the first climate actions without negative net global emissions
[ad_1]
Rogelj, J. et al. A new scenario logic for the long-term temperature goal of the Paris Agreement. Nature 573, 357-363 (2019).
Anderson, K. & Peters, G. The problem with negative emissions. Science 354, 182-183 (2016).
Google Scholar
Peters, GP & Geden, O. Catalyzing policy change from low carbon to negative carbon. Nat. Clim. Switch 7, 619-621 (2017).
Google Scholar
Clarke, L. et al. International climate policy architectures: overview of international EMF scenarios 22. Energy saving. 31, S64 â S81 (2009).
Google Scholar
Kriegler, E. et al. The role of technology in achieving climate policy goals: an overview of the EMF 27 study on global technology and climate policy strategies. Clim. Switch 123, 353-367 (2014).
Google Scholar
Clarke, LKJ et al. in Climate change 2014: climate change mitigation (eds Edenhofer, O. et al.) 413-510 (IPCC, Cambridge Univ. Press, 2014).
World Energy Outlook 2015 (IEA, 2015).
van Vuuren, D. et al. A new scenario framework for climate change research: matrix scenario architecture. Clim. Switch 122, 373-386 (2014).
Google Scholar
Meinshausen, M. et al. Greenhouse gas emissions targets to limit global warming to 2 ° C. Nature 458, 1158-1162 (2009).
Matthews, HD, Gillett, NP, Stott, PA & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829-832 (2009).
Fuss, S. et al. Focus on negative emissions. Nat. Clim. Switch 4, 850-853 (2014).
Shue, H. Climate dream: negative emissions, risk transfer and irreversibility. J. Hum. Rights Approx. 8, 203-216 (2017).
Google Scholar
Williamson, P. Emissions Reduction: Taking a Look at CO2 removal methods. Nature 530, 153-155 (2016).
Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Switch 6, 42-50 (2016).
Popp, A. et al. The future of land use in shared socio-economic pathways. Glob. About. Switch 42, 331-345 (2017).
Google Scholar
Field, CB & Mach, KJ Resizing Carbon Dioxide Removal. Science 356, 706-707 (2017).
Boysen, LR et al. The limits of the mitigation of global warming through the elimination of terrestrial carbon. The future of the Earth 5, 463-474 (2017).
Morrow, D. & Svoboda, T. Geoengineering and non-ideal theory. Aff. Public Q. 30, 83-102 (2016).
Google Scholar
Fujimori, S., Rogelj, J., Krey, V. & Riahi, K. A new generation of emissions scenarios should cover blind spots in the carbon budget space. Nat. Clim. Switch 9, 798-800 (2019).
Fuss, S. et al. Negative Emissions â Part 2: Costs, Potentials and Side Effects. About. Res. Lett. 13, 063002 (2018).
Google Scholar
Bauer, N. et al. Global Energy Sector Emissions Reductions and Bioenergy Use: An Overview of the Bioenergy Demand Phase of the EMF-33 Model Comparison. Clim. Switch 163, 1553-1568 (2018).
Google Scholar
Roe, S. et al. Contribution of the terrestrial sector to a world at 1.5 ° C. Nat. Clim. Switch 9, 817-828 (2019).
Google Scholar
Hanssen, SV et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Switch ten, 1023-1029 (2020).
Hasegawa, T. et al. Food security in the context of a strong demand for bioenergy towards long-term climate objectives. Clim. Switch 163, 1587-1601 (2020).
Google Scholar
Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite the negative side effects of terrestrial mitigation. Nat. Common. ten, 5240 (2019).
Google Scholar
Riahi, K. et al. Locked in the Copenhagen Commitments – Implications of Short-Term Emissions Targets for the Cost and Feasibility of Long-Term Climate Targets. Technol. Forecast. Soc. Switch 90, 8-23 (2015).
Google Scholar
Rogelj, J. et al. to the IPCC Special report on global warming of 1.5â° C (eds Masson-Delmotte, V. et al.) 93-174 (OMM, 2018).
Luderer, G. et al. Residual fossil CO2 emissions in the tracks from 1.5 to 2 ° C. Nat. Clim. Switch 8, 626-633 (2018).
McCollum, DL et al. Energy investment needs to fulfill the Paris Agreement and achieve the Sustainable Development Goals. Nat. Energy 3, 589-599 (2018).
Google Scholar
Tebaldi, C. & Knutti, R. The use of the multi-model set in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053-2075 (2007).
Google Scholar
Thompson, SG & Higgins, JPT How should meta-regression analyzes be undertaken and interpreted? Stat. Med. 21, 1559-1573 (2002).
Google Scholar
Fujimori, S. et al. Inclusive policy for climate change mitigation and food security under the climate target of 1.5 ° C. About. Res. Lett. 13, 074033 (2018).
Google Scholar
Fuhrman, J., McJeon, H., Doney, SC, Shobe, W. & Clarens, AF From zero to hero? Why integrated assessment modeling of negative emissions technologies is difficult and how we can do better. Before. Clim. 1, 11 (2019).
Google Scholar
Nemet, GF et al. Negative Emissions â Part 3: Innovation and Scaling Up. About. Res. Lett. 13, 063003 (2018).
Google Scholar
Realmonte, G. et al. An inter-model assessment of the role of direct air capture in in-depth mitigation pathways. Nat. Common. ten, 3277 (2019).
Beerling, DJ et al. Agriculture with crops and rocks to combat global climate, food and soil security. Nat. Plants 4, 138-147 (2018).
Google Scholar
High-level review of a wide range of marine geoengineering techniques on offer (GESAMP, 2019).
Fujimori, S. et al. SSP3: implementation of the AIM of shared socio-economic paths. Glob. About. Switch 42, 268-283 (2017).
Google Scholar
Fujimori, S., Masui, T. & Matsuoka, Y. AIM / CGE [Basic] Manual (Tsukuba Center for Social and Environmental Systems Research, NIES, 2012).
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Comprehensive land-use model linked to an integrated valuation model. Sci. About. 580, 787-796 (2017).
Frank, S. et al. Reduce greenhouse gas emissions in agriculture without compromising food security? About. Res. Lett. 12, 105004 (2017).
Google Scholar
Fricko, O. et al. The marker quantification of Shared Socio-economic Path 2: an intermediate scenario for the 21st century. Glob. About. Switch 42, 251-267 (2017).
Google Scholar
Havlik, P. et al. Mitigation of climate change through transitions of livestock systems. Proc. Natl Acad. Sci. United States 111, 3709-3714 (2014).
Google Scholar
Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC model documentation (CCR, 2017).
Popp, A. et al. Protection of land use for climate change mitigation. Nat. Clim. Switch 4, 1095-1098 (2014).
Bodirsky, BL et al. Reactive nitrogen requirements to feed the world in 2050 and nitrogen pollution mitigation potential. Nat. Common. 5, 3858 (2014).
Emmerling, J. et al. The WITCH 2016 model – Documentation and implementation of shared socio-economic pathways (FEEM Working Document n ° 42, 2016).
Hasegawa, T. et al. Risk of increased food insecurity as part of a strict global climate change mitigation policy. Nat. Clim. Switch 8, 699-703 (2018).
Google Scholar
Fujimori, S. et al. A multi-model assessment of the food security implications of climate change mitigation. Nat. To support. 2, 386-396 (2019).
Google Scholar
[ad_2]